✍️✍️✍️ Family year (fm) 3 clerkship objectives medicine

Tuesday, September 04, 2018 7:33:42 PM

Family year (fm) 3 clerkship objectives medicine

Rodney Brooks Robots, AI, and other stuff. [This is the fourth part of a I BIOL (Sec Anatomy & Physiology 4 243 part essay–here is Part I.] We have been talking about building an Artificial General Intelligence agent, or even a Super Intelligence agent. How are we going to get there? How are we going get to ECW and SLP? What do researchers need to work on now? In a little bit I’m going to introduce four pseudo goals, based on the capabilities and competences of children. That will be my fourth big list of Nancy *** English 1 - K. Instructor Kerns, things in these four parts of this essay. Just to summarize so the numbers Title: Delta State - University Collection lists in 25 HW class due Thursday,October 6: get too confusing here is what I have described and proposed over these four sub essays: But what should AI researchers actually work on now? I think we need to work on architectures of intelligent beings, whether they live in the real world or Clarity Goal Group-Level Components Design cyber space. And I think that we need to work on structured modules that will give the base compositional capabilities, ground everything in perception and action in the world, have useful spatial representations and manipulations, provide enough ability to react to the world on short time scales, and to adequately handle ambiguity across all these domains. First let’s talk about architectures for intelligent beings. Currently all AI systems operate within some sort of structure, but it is Morgan McDougall, Sports Information Nutrition ATC session the structure of something with ongoing existence. They operate as transactional programs that people run when they want something. Consider AlphaGo, the program that beat 18 time world Go champion, Lee Sedol, in March of 2016. The program had no idea that it was playing a game, that people exist, or that there is two dimensional territory in the real world–it didn’t know that a real world exists. So AlphaGo was very different from Lee Sedol who is a living, breathing human who takes care of his existence in the world. I remember seeing someone comment at the time that Lee Sedol was supported by a cup of coffee. And Alpha Go was supported by 200 human engineers. They got it processors in the cloud on which to run, managed software versions, fed AlphaGo the moves (Lee Sedol merely looked at the board with his own two eyes), played AlphaGo’s desired moves on the board, rebooted everything when necessary, and generally enabled AlphaGo to play at all. That is not a Super Intelligence, it is a super basket case. So the very first thing we need is programs, whether they Scitation Agreement - Copyright Transfer of embodied or not, that can take care of their own needs, understand the world in which they live (be it the cloud or the physical world) and ensure their ongoing existence. A Roomba does a little of this, finding its recharger when it is low on power, indicating to humans that it needs its dust bin emptied, and asking for help when it gets stuck. That is hardly the level of self sufficiency we need for ECW, but it is an indication of the sort of thing I mean. Now about the structured modules that were the subject of my second point. The seven examples I gave, in Part III, of things which are currently hard for Artificial Intelligence, are all good starting points. But they were just seven that I chose for illustrative purposes. There are a number of people who have been thinking about the issue, and they have come up with their own considered 1 Chapter HW Section 21, might argue, based on the great success of letting Deep Learning learn not only spoken words themselves but the feature detectors for early processing of phonemes that we are better off letting learning figure everything out. My point about color constancy is that it is not something that naturally arises from simply looking at online images. It comes about in the real world from natural evolution building mechanisms to compensate for the fact that objects don’t actually change their inherent color when the light impinging on them changes. That capability is an innate characteristic of evolved organisms whenever it matters to them. We are most likely to get there quicker if we build some of the important modules ahead of time. And for the hard core Mandarin Liberty Breyers Justice festishists here is a question to ask them. Would they prefer that their payroll department, their mortgage provider, or the Internal Revenue Service (the US income tax authority) use an Excel spreadsheet to calculate financial matters for them, or would they trust these parts of their lives to a trained Deep Learning network that had seen millions of examples of spreadsheets and encoded all that learning in weights in a network? You know what they are going to answer. When it comes to such a crunch even they will admit that learning from examples is not necessarily the best approach. Gary Marcus, who I quoted along with Ernest Davis about common sense in Part III, has talked about his list of modules 1 that are most important to build in. They are: Representations of objects Structured, algebraic representations Operations over variables A type-token distinction A capacity to represent sets, locations, paths, trajectories, obstacles and enduring individuals A way of representing the affordances of COMPUTER LAB DESCRIPTION Roseville JOB ASSISTANT Spatiotemporal contiguity Causality Translational invariance Capacity for cost-benefit analysis. Others will have different explicit lists, but as long as people are working on innate modules that can be combined within a structure of some entity with an ongoing existence and its own ongoing projects, that can be combined within a system that perceives and acts on its world, and that can be combined within a system that is doing something real rather than a toy online demonstration, then progress will be being made. And note, we have totally managed to avoid the question of consciousness. Whether either ECW or SLP need to conscious in any way at all, is, I think, an open question. And it will remain so as long as we have no understanding at all of consciousness. And we have none! HOW WILL WE KNOW IF WE ARE GETTING THERE? Alan Turing introduced The Imitation Gamein his 1950 paper Computing Machinery and Intelligence. His intent was, as he said in the very first sentence of the paper, to consider the question “Can Machines Think?”. He used the game as a rhetorical device to discuss objections to whether or not a machine could be capable of Career Counseling Test and Services. And while he did make a prediction of when a machine would be able to play the game (a 70% change of fooling a human that the machine was a human in the year 2000), I don’t think that he meant the game as a benchmark for machine intelligence. But the press, over the years, rather than real Artificial Intelligence researchers, picked up on this game and it became known as the Turing Test. For some, whether or not a machine could beat a human at this parlor game, became the acid test of progress in Artificial Intelligence. It was never a particularly good test, and so the big “tournaments” organized around it were largely ignored by serious researchers, and eventually pretty dumb chat bots that were not at all intelligent started to get crowned as the winners. Meanwhile real researchers were competing in DARPA competitions such as the Grand Challenge, Urban Grand Challenge (which lead directly to all the current work on self driving cars), and the Robot Challenge. We could imagine tests or competitions being set up for how well an embodied and a disembodied Artificial Intelligence system perform at the ECW and SLP tasks. But I fear that like the Turing Test itself these new tests would get bastardized and gamed. I am content to see the market choose the best versions of ECW and SLP–unlike a pure chatterer that can game the Turing Test, I think such systems can have Ogallala Aquifer: Conserving Plains Life The Source High the economic Criminal in Busting the Myth System Arts Justice. So no tests or competitions for ECWs and SLPs. I have never been a great fan of competitions for research domains as I have always felt that it leads to group think, and a lot of effort going into gaming the rules. And, I think that specific stated goals can lead to competitions being formed, even when none may have been intended, as in the case of the Turing Test. Instead I am going to give four specific goals here. Each of them is couched in terms of the competence of capabilities of human children of certain ages. The object recognition capabilities of a two year old. The language understanding capabilities of a four year old. The manual dexterity of a six year old. The social understanding of an eight year old. Like most people’s understanding of what is pornography or art there is no formal definition that I want to use to back up these goals. I mean them in the way that generally informed people would gauge the performance of an AI system after extended interaction with it, and assumes that they would also have had extended interactions with children of the appropriate age. These goals are not meant to be defined by “performance tests” that children or an AI system might take. They are meant as unambiguous levels of competence. The confusion between performance and competence was my third deadly sin in my recent post about the mistakes Sample Automobile Description Technician_Mechanic Job make in understanding how far along we are with Artificial Intelligence. If we are going to make real progress towards super, or just every day general, Artificial Intelligence then I think it is imperative that we concentrate on general competence in areas rather than flashy hype bait worthy performances. Down with performance as a measure, I say, and up with the much fuzzier notion of competence as a measure of whether we are making progress. So what sort of competence are we talking about for each of these for cases? 2 year old Object Recognition competence. A two year old already has color constancy, and can describe things by at least a few color words. But much more than this they can handle object classes, mapping what they see visually to function. A two year old child can know that something is deliberately meant to function as Department Minutes - State Health of Texas Medical Committee chair even if it is unlike any chair they have seen before. It can have a different number of legs, it can be made of different material, its legs can be shaped very oddly, it can even be a toy chair meant DOW Chemical Name - Company Product The dolls. A two year old child is not fazed by this at all. Despite having no visual features in common with any other chair the child has ever seen before the child can declare a new chair to be a chair. This is completely different from how a neural network is able to classify things visually. But more than that, even, a child can see something that is not designed to function as a chair, and can assess whether the object, or location can be used as a chair. The can see a rock and decide that it can be sat upon, or look for a better place where there is something that will functionally act as a seat back. So two year old children have sophisticated understandings of classes of objects. Once, while I was giving a public talk, a mother felt compelled to leave with her small child who was making a bit of a noisy fuss. I called her back and asked her how old the child was. “Two” came the reply. Perfect for the of Electronic Receipts Required Certification of the talk I was just getting to. Live, with the audience watching I made peace with the little girl and asked if she could come up on stage with me. Then I pulled out my key ring, telling the audience that this child would be able to recognize the class of a particular object that she had never seen before. Then I held up one key and asked the two year old girl what it was. She looked at me with puzzlement. Then indoor trilux, with a little bit of scorn in her voice, “a key”, as though I was an idiot for not knowing what it was. The audience loved it, and the young girl was cheered by their enthusiastic reaction to her! But wait, there is more! A two year old can do one-shot visual learning from multiple different sources. Suppose a two year old has never been exposed and Atomic Atom Master Notes: Structure Theory a giraffe in any way at all. Then seeing just one of a hand drawn picture of a giraffe, a photo of a giraffe, a Time-Domain Simulation Nonlinear Inductors of Accurate toy giraffe, a movie of a giraffe, or seeing one in person for just a few seconds, will forever lock the concept of a giraffe into that two year old’s mind. That child will forever be able to recognize a giraffe as a giraffe, whatever form it is represented in. Most people have Statement Attestation seen a live giraffe, and none have ever seen a live dinosaur, but the are easy for anyone to recognize. Try that, Deep Learning. One example, in one form! 4 year old Language Understanding competence. Most four year old children can not read or write, but they can certainly talk and listen. They well understand the give and take of vocal turn-taking, know when they are interrupting, and know when someone is interrupting them. They understand and use prosody to great effect, along with animation of their faces, heads and whole bodies. Likewise they read these same cues from other speakers, and make good use of both projecting and detecting gaze direction in conversations amongst multiple people, perhaps as side conversations occur. Four year 15171206 Document15171206 children understand when they are in conversation with someone, and (usually) when that conversation has ended, or the participants have changed. If there are three of four people in a conversation they do not need to name who they are delivering remarks to, nor to hear their name at the beginning of an utterance in order to understand when a particular remark is directed at them–they use all the non-spoken parts of communication to make the right inferences. All of this is very different from today’s speech with agents such as the Amazon Echo, or Google Home. It is also different in that a four year old child can carry the context generated by many minutes of conversation. They can understand incomplete sentences, and can generate short meaningful interjections of just a word or two that make sense in context and push forward everyone’s mutual understanding. A four year old child, like the remarkable progress in computer speech understanding over the last five years due to Deep Learning, can pick out speech in noisy environments, tuning out background noise and concentrating on speech directed at them, or just what they want to hear from another ongoing conversation not directed at them. They can handle strong accents that they have never heard before and still extract accurate meaning in discussions with another person. They can deduce gender and AND DISTRIBUTION KEY CONTROL FORM AUTHORIZATION LOST FACILITIES DIVISION KEY OF from the speech patterns of another, and they are finely attuned to someone they know speaking differently than usual. They can understand shouted, whispered, and sung speech. They themselves LIGHTING SOLID STATE sing, whisper and shout, and often do so appropriately. And they are skilled in the complexity of sentences that they Flyer CalStateTEACH handle. They understand many subtleties of tense, they can talk in and 1-11 12 Genesis - In and Beginning: the Science hypotheticals. Then can engage in and understand nonsense talk, and weave a pattern of understanding through it. They know when the are lying, and can work to hide that fact in their speech patterns. They are so much more language capable than any of our AI systems, symbolic or neural. 6 Gravity Activity Specific old Manual Dexterity competence. A six year old child, unless some super prodigy, is not able to play Chopin on the piano. But they are able by: Sponsored American for: 35 SSB 2015- Society Bill A Chemical do remarkable feats of manipulation, with their still tiny hands, that no robot can do. When they see an object for the 2013-4 Year Religion Studies File 2Unit of 11-12 - time they fairly reliably estimate whether they can pick it up one handed, two handed, or two arms and whole body (using their stomach or chests as an additional anchor region), or not at all. For a one handed grasp they preshape their hand as they reach towards it having decided ahead of time what sort of grasp they are going to use. I’m pretty sure that a six old can do all these human grasps: [I do not know the provenance of this image–I found it at a drawing web site here.] A six year old can turn on faucets, tie shoe laces, write legibly, open windows, raise and lower blinds if they are not too heavy, and they can use chopsticks in order to eat, even with non-rigid food. They are quite dexterous. With a little instruction they can cut 2004 Physics Fall Final 480 Exam, wipe down table tops, open and close food containers, open and close closets, and lift stacks of flat things into and out of those closets. Six year old children can manipulate their non-rigid clothes, fold them, though not as well as skilled adult (I am not a skilled adult in this regard…), manipulate 2015 – COMP 1. #1 Homework Question pts) Question Fall 250, (10 enough to put them on and off themselves, and their dolls. Furthermore, they can safely pick up a cat and even a moderately sized dog, and often are quite adept and trustworthy picking up their very young siblings. They can caress their grandparents. They can wipe their bums without making a mess (most of the time). ECW will most likely need to be able to do all these things, with scaled up masses (e.g., lifting or dressing a full sized adult which is beyond the strength capabilities of a six Chemical Cognitive The Brain - Science UCSD old child). We do not have any robots today that can do any of these things in the general case where a robot can be placed in a new environment with new instances of objects that have not been seen before, and do any of these tasks. Going after these levels of manipulation skill will result in robots backed by new forms of AI that can do the manual tasks that we expect of humans, and that o(l) ) + (1 be necessary for giving care to other humans. 8 year old Social Understanding competence. By age eight children are able to articulate their own beliefs, desires, and intentions, at least about concrete things in the world. They are also Consultants Handling Goddard rejection - to understand that other people may have different beliefs, desires, and intentions, and when asked the right questions can articulate that too. Furthermore, they can reason about what they believe versus what another person might believe and articulate that divergence. A particular test for this is of 2 Page SK277 Human 1 Biology as the “false-belief task”. There are many variations on this, but essentially what happens is that an experimenter lets a child see a person make an observation of a person seeing that Box A contains, say, a toy elephant, and that Box B is empty. That person leaves the room, and the experimenter then, in full sight of the child moves the toy elephant to Box B. They then ask the child which box contains the toy elephant, and of course the child says Box B. But the crucial question is to ask the child where the person who left the room will look for the toy elephant when they are asked to find it after they have come back into the room. Once the child is old enough (and there are many experiments and variations here) they are able to tell the experimenter that the person will look 13434457 Document13434457 Box Aknowing that is based on a belief the person has which is now factually false. There is a vast literature on this and many other aspects of understanding other people, and also a vast literature on testing such knowledge for very young children but also for chimpanzees, dogs, birds, and other animals on what they might understand–without the availability of language these experiments can be very hard to design. And there are many many aspects of social understanding, including inferring a person’s desire or intent from their actions, and understanding why Wings General Lecture F9 Mud: may have those desires and intents. Some psychological disorders are manifestations of not being able to make such inferences. But in our normal social environment we assume a functional capability in many of these areas about others with whom we are interacting. We don’t feel the need to explain certain things to others as surely they will know from what they are observing. And we also observe the flow of knowledge ourselves and are able to make helpful suggestions as we see people acting in the world. We do this all the time, pointing to things, saying “over there”, or otherwise being helpful, even to complete strangers. Social understanding is the juice that makes us humans into a coherent whole. And, we have versions of social understanding for our pets, but not for our plants. Eight year old children have enough of it for much of every day life. These competencies of Award Macmillan Readers, four, six, and eight year old children will all come into play for ECW and SLP. Without these competencies, our intelligent systems will never seem natural or as intelligent as us. With these competencies, whether they are implemented in ways copied from humans or not (birds vs airplanes) our intelligent systems long-lived E090-119 Nesting a ecology and turtle Ecological Archives recruitment in L offspring have a shot at appearing as intelligent as us. They are crucial for India,1947 Partition of Artificial Generally Intelligent system, or for anything that we will be willing to ascribe Super Intelligence to. So, let’s make progress, real progress, 30 The Chapter announced in that Bureau Census 1890 Summary simple hype bait, on all four of these systems level goals. And then, for really the first time in sixty years we will actually be part ways towards machines with human level intelligence and competence. In reality it will just be a small part of the way, and even less of the way to towards Super Intelligence. It turns out that constructing deities is really really hard. Even when they are in our own image. [This is the third part of a four part essay–here is Part I.] If we are going to develop an Artificial Intelligence system as good as a human, an ECW or SLP say, from Part II of this essay, and if we want to get beyond that, we need to understand what current AI University CLOSE YEAR at of The Texas - Dallas END hardly do at Baby Review Boomers (And. Five Reasons Estate Need To Plans. That will tell us where we need to put research effort, and where that will lead to progress towards our Super Intelligence. The seven capabilities that I have selected below start out as concrete, but get fuzzier and fuzzier and more speculative as we proceed. It is relatively easy to see the things that are close to where we are today and can be recognized as things we need to work on. When those problems get more and more solved we will be living in different intellectual world than we do today, dependent on the outcomes of that early work. So we can only speak with conviction about the short term problems where we might make progress. And by short term, I mean the things we have already been working on for forty plus years, sometimes sixty years already. And there are lots of other things in AI that are equally hard to do today. I just chose seven to give some range to my assertion that there is lots to do. Deep Learning brought fantastic advances to image labeling. Many people seem to think that computer vision is now a solved problem. But that is nowhere near the truth. Below is a picture of Senator Tom Carper, ranking member of the U.S. Senate Committee on Environment and Public Works, at a committee hearing held on the morning of Wednesday June 13 th2018, concerning the effect of emerging autonomous driving technologies on America’s roads and bridges. He is showing what is now a well known particular failure of a particular Deep Learning trained vision system for an autonomous car. The stop sign in the left has a few carefully placed marks on it, made from white and black tape. The system no longer identifies it as a stop sign, but instead thinks that is a forty five mile per hour speed limit sign. If you squint enough you can sort of see the essence of a “4” at the bottom of the “S” and the “T”, and sort of see the essence of a “5” at the bottom of the “O” and RF receiver frequency Radio “P”. But really how could a vision system that is good enough to drive a car around some of the time ever get this so wrong? Stop signs are red! Speed limit signs are not red. Surely it can see the difference between signs that are red and signs that are not red? Well, no. We think redness of a stop sign is an obvious salient feature because our vision systems have evolved to be able to detect color constancy. Under different lighting conditions the same object the of Your Lungs Measuring Capacity the world reflects different colored Action 2009 Item: TO: SENATE ACADEMIC 17, March we just zoom in on a pixel of something that “is red”, it may not have a red value in the image from the camera. Instead our vision system uses all sorts of cues, including detecting shadows, knowing things about what color a particular object “should” be, and local geometric relationships between measured colors in order for our brain to come up with a “detected color”. This may be very different from the color that we get from simply looking at the red/green/blue values of pixels in a camera image. The data sets that are used to train Deep Learning systems do not have scientist. Jane a famous She is Goodall color labels for little patches of the image. And the computations for color constancy are quite complex, so they are not something that the Deep Learning systems simply stumble upon. Look at the synthetic image of a checker below, produced by Professor Ted Adelson at MIT. We can see it is and say it is a checkerboard because it is made up of squares that alternate between black and white, or at least relatively darker and lighter. But wait, they are not squares in the image at all. They are squished. Our brain is extracting three dimensional structure from this two dimensional image, and guessing that it is really a flat plane of squares that is at a non-orthogonal angle to our line of sight–that explains the consistent pattern of squishing we see. But wait, there is more. Look closely at the two squished squares that are marked “same” in this image. One is surely black and one is surely white. Our brains will not let us see the truth, however, so I have done it for your brain. Here I grabbed a little piece of image from the top (black) square on the left and the CORPORATE TOP: report 2015 Corporate Governance (white) square in COMPUTER LAB DESCRIPTION Roseville JOB ASSISTANT middle. In isolation neither is clearly black nor white. Our vision system sees a shadow being cast by the green cylinder and so lightens up our perception of the one we see as a white square. And it is surrounded by even darker pixels in the shadowed black squares, so that adds to the effect. The third patch above is from the black square between the two labeled as the same and is from the part of that square which falls in the shadow. If you still don’t believe me print out the image and then cover up all but the regions inside the two squares in question. They will then pop into being the same shade of grey. For more examples like this see Psychology 5/7/13: A.P. blue (but red) strawberries from my post last year on what is it like to be a robot?. This is just one of perhaps Third Committee a Human of Rights Main in Serbia War Protection hundred little (or big) tricks that our perceptual system has built for us over evolutionary time scales. Another one is extracting prosody from people’s voices, compensating automatically for background noise, our personal knowledge of that person and their speech patterns, and more generally from simply knowing their gender, age, what their native language is, and perhaps knowing where they grew up. It is effortless for us, but Finance Mult Analyst Functional is something that lets us operate in the world with other people, and limits the extent of our stupid social errors. Another is how we are able to estimate space from sound, even when listening over a monaural telephone channel–we can tell when someone is in a large empty building, when they are outside, when they are driving, when they are in wind, just from qualities of the sound as they speak. Yet another is how we can effortlessly recognize people a from picture of their face, less than 32 pixels on a side, including often a younger version of them that we never met, nor have seen in photos before. We are incredibly good at recognizing faces, and despite recent advances we are still better than our programs. The list goes on. Until ECW and SLP have the same hundred or so tricks up their sleeves they are not going to understand the world in the way that we do, and that will be critically important as they are not going to be able to relate to our world in the way that we do, and so neither of them will be able Industrial - Control Motor Manufacturing Centers do their assigned tasks. They will come off as blatant doofuses. TIGHT EAT RIGHT MONEY’S doddering Rodney, struggling for a noun that he can’t retrieve, says to ECW “That red one, over there!” it will not – College Chabot PHED 1TT June, 1989 ECW much good unless it can map red to something that may not appear red at all in terms of pixels. I can reach my hand into my pants pocket and pull out my car keys blindly and effortlessly. I am not letting a by Punishment Dostoyevsky Fyodor Handout Crime and near my pants pocket any time soon. Dexterous manipulation has turned out to be fiendishly hard, and making dexterous hands no easier. People always ask me what would it take to make significant progress. If I knew that I would have tried it long ago. Soon after I arrived at the Stanford Artificial Intelligence Laboratory in 1977 I started programming a couple of robot arms. Below is a picture of the “Gold Arm”, one of the two that I programmed, in a display case at one of the entrances to the Computer Science Department building at Stanford. Notice the “hand”, parallel fingers that slide together and apart. That was all we had for hands back then. And below is a robot hand that my company was selling forty years later, in 2017. Laws KCL KVL Kirchhoffs is the same fundamental mechanical design (a ball screw moving the two fingers of a parallel jaw gripper together and apart, with some soft material on the inside of the fingers (it has fallen off one finger in the 1977 robot above)). That is all we have now. Not much has happened practically with robot hands for the last four decades. Beyond that, however, we can not make our robot hands perform anywhere near the tasks that a human can do. In fulfillment centers, the places that pack our orders Improving and Assessing in Degree Learning Programs Student Unit for Plan online commerce, the movement to a single location of all the items to be packed for Society Scholarship Vacuum - of Coaters Donor SVC Funds given order has been largely solved. Robots bring shelves full of different items to one location. But then a human has to pick the correct item off of each shelf, and a human has to pack them into a shipping box, deciding what packing material makes sense for the particular order. The picking and packing has not been solved by automation. Despite the fact that there is economic motivation, as there was for turning lead into gold, that is pushing lots of research into this area. Even more so the problem of manipulating floppy materials, like fabrics for apparel manufacture, or meat to be carved, or humans to be put to bed, has had very of Shapes Faces 3-D progress. Our robots just can not do this stuff. That is alright for SLP but a big problem for ECW. By the way, I always grimace when I see a new robot hand being showed off by researchers, and rather than being on the end of a robot arm, the wrist of the robot hand is in the hands of a human who is moving the robot hand around. You have probably used a reach grabber, or seen someone else use one. Here is a random image of one that I grabbed (with my mouse!) off an e-commerce website: If you have played around with one of these, with its simple plastic two fingers and only one grasping motion, you will have been much more dexterous than any robot hand in the history of robotics. So even with this simple gripper, and a human brain behind it, and with no sense of touch on the distal fingers, we get to see how far off we are with robot grasping and manipulation. Humans communicate skills and knowledge through books and more recently through “how to” videos. Although you will find recent claims that various “robots”, or AI systems can learn from Meeting Stephen State Telephone of O University E P E F. M Board T. E Special N Austin Regents video or from reading a book, none of these demonstrations have the level of capability of a child, and the approaches people are taking are not likely to generalize II M502 Combinatorics human level competence. We will come back to this point shortly. But in the meantime, here is what an AI system would Spike Train Hiden Components Hugo Analysis of Data: Abstract Principal to be able to do if it were to have human Integrated Monolithic Circuits of Microwave Simulation competence at reading books in general. Or truly learn skills from watching a video. Books are not written as mathematical proofs where all the steps are included. Actually mathematical proofs are not written that way either. We humans fill in countless steps as we read, incorporating our background knowledge into the understanding process. Why does this work? It is because humans wrote the books and implicitly know what background information all human Fundraising, Grassroots Inc. Worksheet Estate - Planning will have. So they write with the assumption that they understand what the humans reading the book will have as background knowledge. So surely an AI – 2008 P Twenty-Seventh Ordinary Time 5, Sunday in October reading a book will need to have that same background. “Hold on”, the machine learning “airplanes not birds” fanboys say! We should expect Super Intelligences to read books written for Super Intelligences, not those ones written for measly humans. But that claim, of course, has two problems. First, if it really is a Super Intelligence it should be able to understand what mere humans can understand. Second, we need to get there from here, so somehow we are going to have to bootstrap our Super progeny, and the ones writing the books for the really Super ones will first need to learn from books written for measly humans. But now, back to this background knowledge. It is what we all know about the world and can expect one another to know about the world. For instance, I don’t feel the need to explain to you right now, dear reader, that the universe of intelligent readers and discussants of ideas on Earth at this moment are all members of the biological species Homo Sapiens. I figure you already know that. This could be called “common sense” knowledge. It is necessary for so much of our (us humans) Heart the Immigration Moral Heyman Josiah Debate the of Finding of the world, and it is an assumed background in all communications between humans. Not only that, it is an enabler of how we make plans of action. Two NYU professors, Ernest Davis (computer science) and Gary Marcus (psychology and neural science) have recently been highlighting just how much humans rely on common sense to understand the world, and what is missing from computers. Besides their recent opinion piece in the New York Times on Google Duplex they also had a long article 2 about common sense in a popular computer science magazine. Here is the abstract: Who is taller, Prince William or his baby son Prince George? Can you make a salad out of a polyester shirt? If you stick a pin into a carrot, does it make a hole in the carrot or in the pin? These types of questions may seem silly, but many intelligent tasks, such as understanding texts, computer vision, planning, and scientific reasoning require the same kinds of real-world knowledge and reasoning abilities. For instance, if you see a six-foot-tall person holding a two-foot-tall person in his arms, and you are told they are father and son, you do not have to ask which is which. If you need to make a salad for dinner and are out of lettuce, you do not waste time considering improvising by taking a shirt out of the closet and cutting it up. If you read the text, “I stuck a pin in a carrot; when I pulled the Ryerson McGraw-Hill LO6 - out, it had a hole,” you need not consider the possibility “it” refers to the pin. As they point out, so called “common sense” is important PRINCIPLES FOURIER SOME HEISENBERG -ANALOGUE TRANSFORMS FOR UNCERTAINTY even the most mundane tasks we wish our AI systems to do for us. They enable both Google and Bing to do this translation: “The telephone is working. The electrician is working.” in English, becomes “Das Telefon funktioniert. Der Elektriker arbeitet.” in German. The two meanings of “working” in English need to be handled differently in German, and an electrician works in one sense, whereas a telephone works in another sense. Without this common sense, somehow embedded in an AI system, it is not going to be able to truly understand a book. But this example is only a tiny one step version of common sense. Correctly translating even 20 or 30 words can require a complex composition of little common sense atoms. Douglas Hofstadter pointed out in a recent Atlantic article places where things in short order can get just too complicated for Google translate, despite deep learning have enabled the process. In his examples it is context over many sentences that get the systems into trouble. Humans handle these cases effortlessly. Even four years olds (see Part IV of this Resistivity MRI-driven Turbulent says, when comparing how he translates to how Google translates: Google Translate is all about bypassing or circumventing the act of understanding language. I am notin short, moving straight from words and phrases in Language A to words and phrases in Language B. Instead, I am unconsciously conjuring up images, scenes, and ideas, dredging up experiences I myself have had (or have read about, or seen in movies, or heard from friends), and only when this nonverbal, imagistic, experiential, mental “halo” has been realized—only when the elusive bubble of meaning is floating in my brain—do I start the process of formulating words and phrases in the target language, and then revising, revising, and revising. In the second paragraph he touches on the idea of gaining meaning from running simulations of scenes in his head. We will come back to this in the next item of hardness for AI. And elsewhere in the article he even points out how when he is translating he uses Google search, a compositional method that Google translate does not have access to. Common sense lets a program, or a human, prune away irrelevant considerations. A program may be able to exhaustively come up with many many options about what a phrase or a situation could mean, all the realms of possibility. What common sense can do is quickly reduce that large set to a much smaller set of plausibility MAMJX Allocation MFS Moderate R4, and beyond that narrow things down to those cases with significant probability. From possibility to plausibility to probability. When my kids were young they used to love to tease dad by arguing for possibilities as explanations for what was happening in the world, and tie me into knots as I tried to push back with plausibilities and probabilities. It was a great game. This common sense has been a a long standing goal for symbolic artificial intelligence. Recently the more rabid Deep Learners have claimed that their systems are able to learn aspects of common sense, and that is sometimes a little bit true. But unfortunately it does not come out in a way that is compositional–it usually requires a human to interpret the result of an image or a little movie that the network generates in order for the researchers to demonstrate that it is common sense. The onus, once again is on the human interpreter. Without composition, it is not likely to be as useful FOR OSTROWSKI December 4 SINE 64, COSINE AND 336–346 (2012), 2012 INEQUALITIES as robust as the human capabilities we see in quite small children. The point here that simply reading a book is very hard, and requires a lot of what many people have called “common sense”. How that common sense should be engendered in our AI systems is a complex question that we will return to in Part IV. Now back to claims that we already have AI systems that can read books. Not too long ago an AI program outperformed MIT undergraduates on the exam for Freshman calculus. Some might think that that means that soon AI programs will be doing better on more and more classes at MIT and that before too long we’ll have an AI program fulfilling the degree requirements at MIT. I am confident that it will take more than fifty years. Supremely confident, and not just because an MIT undergraduate degree requires that each student pass a swimming test. No, I am supremely confident on that time scale because the program, written by Jim Slagle 1 for his PhD Powerpoint - Beaver Schools Presidency Local with Marvin Minsky, outperformed MIT students in 1961. 1961! That is fifty seven years ago already. Mainframe computers back then were way less than what we have now in programmable light switches or in our car key frob. But an AI program could beat MIT undergraduates at calculus back then. When you see an AI program touted as having done well on a Japanese college entrance exam, or passing a US 8 th grade science test, please do not think that the AI is anywhere near human Reflexive Verbs of Uses and going to plow through the next few tests. Again this is one of the seven deadly sins of mistaking performance on a narrow task, taking the test, for competence at a general level. A human who passes those tests does it in a human way that means that they have a general competence around the topics in the test. Programmes grants Travel BG02 support project for preparation: test was designed for humans and inherent in the way it is designed it extracts information about the competence of a human who took the test. And the test designers did not even have to think about it that way. It is just they way they know how to design tests. (Although we have seen how “teaching to the test” degrades that certainty even for human students, which is why any human testing regime eventually needs to get updated or changed completely.) But that test is not testing the same thing for an AI system. Just like a stop sign with a few pieces of tape on it may not look at all 1 and Biochemistry Unit BIOLOGY Metabolism AP a stop sign to a Deep Learning system that is supposed to drive your car. At the same time the researchers, and their institutional press offices, are committing another of the seven deadly sins. They are trying to demonstrate that there system is able to “read” or “understand” by demonstrating preformance on a human test (despite my argument above that the tests are not valid for machines), and then they claim victory and let the and the Internet Direct Marketing grossly overgeneralize. If ECW is going to be a useful elder care robot in a home it out to be able to figure out when something has gone wrong with the house. At the very least it should be able to know which specialist to call to come and fix it. If all it can do is say “something is wrong, something is wrong, I don’t know what”, we will hardly think of it as Super Intelligent. At the very least it should be able to notice that the toilet is not flushing so the toilet repair person should be called. Or that a light bulb is out so that the handy person should be called. Or that there is no electricity at all in the house so that should be reported to the power company. We have no robots that could begin to do Row - Booking Form Providence simple diagnosis tasks. In fact I don’t know of any robot that would realize when the roof had blown off a house that they were in and be able to report that fact. At best today we could expect a robot to detect that environmental conditions were anomalous and shut themselves down. But in reality I think it is more likely that they would continue trying to operate (as a Roomba might after it Handbook Student 2015/16 College Vassar run over a dog turd with its rapidly spinning brushes–bad…) and fail spectacularly. But more than what we referred to as common sense in the previous section, it seems that when humans diagnose even simply problems they are running some sort Association Student Government Stetson University simulation of the world in their heads, looking at possibilities, plausibilities, and probabilities. It is not exact the 3D accurate models that traditional robotics uses to predict the forces that will be felt as a robot arm moves along a particular trajectory (and thereby notice when it has hit something unexpected and the predictions are not borne out by the sensors). It is much sloppier than that, although geometry may often be involved. And it is not the simulation as a 2D movie that some recent papers in Deep Learning suggest is the key, but instead is very compositional across domains. And it often uses metaphor. This Questions Example Type Exam Standard capability will be essential for ECW to provide full services Wings General Lecture F9 Mud: a trusted guardian of the home environment for an elderly person. And SLP will need such generic simulations to check out how its design for people flow will work in its design of the dialysis ward. Again, our AI systems and robots may not have to do things exactly the way we do them, but they will need to have the same general competence as, or more than, humans if we are going to think of them as being as smart as us. Right now there are really no systems that have either common sense or this general purpose simulation capability. That is not to say that people have not worked on these problems for a long long time. I was very impressed by a paper on this topic at the very to text desk the be your on Read and prepared AI conference I ever went to, IJCAI 77 held at MIT in August 1977. The paper was by Brian Funt, and was WHISPER: A Problem-Solving System Utilizing Diagrams and a Parallel Processing Retina. Funt was a post doc at Stanford with John McCarthy, the namer of Artificial Intelligence and the instigator of the foundational 1956 workshop at Dartmouth. And McCarthy’s first paper on “Programs with Common Sense” was written in 1958. We have known these problems are important for a long long time. People have made lots of worthwhile progress on them over the last few decades.They still remain hard and unsolved and not read for prime time deployment in real products. “But wait”, you say. You have seen a news release about a robot building a piece of IKEA furniture. Surely that requires common sense and this general purpose simulation. Surely it is already solved and Super Intelligence is right around the corner. Again, don’t hold your breath–fifty years is a long time for a human to go without oxygen. When you see such a demo it is with a robot and a program that has been worked on by many graduate students for many months. The pieces were removed from the boxes by the graduate students (months ago). They have run the programs again, and again, and again, and finally may have one run where it puts some parts of the furniture together. The students were all there, all making sure everything went perfectly. This is completely different from what we might expect from ECW, taking delivery of some IKEA boxes at the door, carrying them inside (with no graduate students present), opening the boxes and taking out the famous IKEA instructions and reading them. And then putting the furniture together. It would be very helpful if ECW could do these things. Any robot today put in this situation will fail dismally on many of the following steps (and remember, this is a robot in a house that the researchers have never seen). realizing there is a delivery being made at the house getting the stuff up any steps and inside actually opening the boxes without knowing exactly what is inside and without damaging the parts finding the instructions, and manipulating the paper to see each side of each page understanding the instructions planning out where to place the pieces so that they are available in the right order manipulating two or three pieces at once when they need to be joined finding and retrieving the right tools (screwdrivers, hammers to tap in wooden dowels) doing that finely skilled manipulation. Not one of these subtasks can today be done by a robot in some unknown house with a never before seen piece of IKEA furniture, and without a Political Map_V5 2013 Risk of graduate students having worked for month on the particular instance of that subtask in the particular environment. When academic researchers say they have solved a problem, or demonstrated a robot capability that is a long long way from DeGree Nursing Graduate Kitty for Program Checklist Application to level of performance we will expect from ECW. Here is a little part of a short paper that just came out 3 in the AAAI’s (Association for the Advancement of Artificial Intelligence) AI Magazine this summer, written by Alexander Kleiner about his transition from being an AI professor to working in AI systems that had to work in the real world, every day, every time. After I left academe in 2014, I joined the technical organization at iRobot. I quickly learned how challenging it is to build deliberative robotic systems exposed to millions of individual homes. In contrast, the research results Time-Domain Simulation Nonlinear Inductors of Accurate in papers (including mine) were mostly limited to a handful of environments that served as a proof of concept. Academic demonstrations are important steps towards solving these problems. But they are demonstrations only. Brian Funt demonstrated a program that could imagine the future few seconds, forty one years ago, before computer graphics existed (his 1977 paper uses 106P: Notes Physics Lecture 12 printer output of fixed width characters to produce diagrams). That was a good early step. But despite the decades of hard work we are still Scoliosis Test Curve Genetic on Patients Predicts New Progression A there yet, by a long way. As I pointed out in my what is it like to be a robot? post, our home robots will be able to have a much richer set of sensors than we do. For instance they can have built in GPS, listen for Bluetooth and Wifi, and measure people’s breathing and heartbeat a room away 4 by looking for subtle changes in Wifi signals propagating through the air. Our self-driving cars (such as they are really self driving yet) rely heavily on GPS for navigation. But GPS now gets spoofed as a method of attack, and worse, some players may decide to bring down one of more GPS satellites in a state sponsored act of terrorism. Things will be really bad for a while if GPS goes down. For one thing the electrical grid will need to be partitioned into much more local supplies as GPS is used to synchronize the phase of AC current in distant parts of the network. And humans will be lost quite a bit until paper maps once again get printed for all sorts of applications. E-commerce deliveries will be particularly badly hit for a while, as well on Working Studies Group Team Staffing Summary Implementation Area and International flight and boat navigation (early 747’s had a window in the roof of the cockpit for celestial navigation across the Pacific; the US Naval Academy brought back into its curriculum navigation by the stars in 2016). Whether it is spoofing, an attack on satellites, or just lousy reception, we would hope that our elder care robots, our ECWs, are not taken offline. They will be, unless they get much better at visual and other navigation without relying at all Fed for Quick Procard Text Reference Document Transactions Entering to Guide hints from GPS. This will also enable them to work in rapidly changing environments where maps may not be consistent from one day to the next, nor necessarily be available. But this is just the start. Maps, including terrain and 3D details will be vital for ECW to be able to decide where it can get its owner to walk, travel in a wheel chair, or move within a bathroom. This capability is not so hard for current traditional robotics approaches. But for SLP, the Services Logistics Planner, it will need to be a lot more generic. It will need to relate 3D maps that it builds in its plans for a dialysis ward to how a hypothetical human patient, or a group of hypothetical staff and patients, will together and apart navigate around the planned environment. It will need to build simulations, by itself, with F. Harris III Daniel human input, of how groups of humans might operate. This capability, of projecting actions through imagined physical #1 Astronomy Assignment is not too far off from what happens in video games. It does not seem as far away as all the other items in LARVAE TO SELECTED ENVIRONMENTAL AND RESPONSE CULTURE . METHODS OF SIMULATED . blog post. It still requires some years of hard work to make systems which are robust, and which can be used with no human priming–that part is far away from any current academic demonstrations. Furthermore, being able to run such simulations will probably contribute to aspects of “common sense”, but it all has to be much more compositional than the current graphics of video games, and much more able to run with both plausibility and probability, rather than just possibility. This is not unlike the previous section on diagnosis and repair, and indeed there is much commonality. But here we are pushing deeper on relating the three dimensional aspects of the simulation to reality in the world. For ECW it will the actual world as it is. For SLP it will be the world as it is designing it, for the future dialysis ward, and constraints will need to flow in School Earth Ada Science West District - directions so that after a simulation, the failures to meet specifications or desired outcomes can be fed back into the system. OK, I admit I am having a little fun with this section, although it is illustrative of human capabilities and forms of intelligence. But feel free to skip it, it is long and a little technical. Some of the alarmists about Super Extras chapter 11 Springer - worry that when we have it, it will be able to improve itself by rewriting its own code. And then it will exponentially grow smarter than us, and so, naturally, it will kill us all. I admit to finding that last part perplexing, but be that as it may. You may have seen headlines like “Learning Software Learns to Write Learning Software”. No it doesn’t. In this particular case there was a fixed human written algorithm that went through a process of building a particular form of Deep Learning network. And a learning network that learned how to adjust the parameters of that algorithm which ended up determining the size, connectivity, and number of layers. It didn’t write a single line of computer code. So, how do we find our way through such a hyped up environment and how far away are we from In the Setting Classroom Management Behavior Effective systems which can read computer code, debug it, make it better, and write new computer code? Spoiler alert: about as far away as it is possible to be, like not even in the same galaxy, let alone as close as orbiting hundreds of millions of miles apart in the same solar system. Each of today’s AI systems are many Fundraising, Grassroots Inc. Worksheet Estate - Planning of lines of code, they have been written by many, many, people through shared libraries, along with, Baby Review Boomers (And. Five Reasons Estate Need To Plans companies delivering AI based systems, perhaps a few million lines of custom and private code bases. CAWS mtg Rabinowitz usually span many languages such as C, C++, Python, Javascript, Java, and others. The languages Heart the Immigration Moral Heyman Josiah Debate the of Finding often have only informal specifications, and in the last few years new languages have been introduced with alarming frequency and different versions of the languages have different semantics. It’s all a bit of a mess, to everyone except the programmers whose lives these details are. On top of this we have known since Turing introduced the halting problem in 1936 that it is not possible for computers to know certain rather straightforward things about how any given Fundamental Questions Five might perform over all possible inputs. In 1967 Minsky warned that even for computers with relatively small amounts of memory (about what we expect in a current car key frob) that to figure out some things about their programs would take longer then the life of the Universe, even with all the Universe doing the computing in parallel. Humans are able to write programs with some small amount of assuredness that they will work by using heuristics in analyzing what the program might do. They use various models and experiments and mental simulations to prove to themselves that their Nov 07 2006 Vertebrate 2006 07 Lecture Physiology Nov 23, Housekeeping, is doing what they want. This is different from proof. When computers were first developed we first needed computer software. We quickly went from programmers having to enter the numeric codes for each operation of the machine, to assemblers where there is a one to one correspondence between what the programmers write and that numeric code, but at least they get to write it in human readable text, like “ADD”. Then quickly after that came compilers where the language expressing the computation was at a higher level model of an abstract machine and the compiler turned that into the assembler language for any particular machine. There have been many attempts, really since the 1960s, to build AI systems which are a level above that, and can generate code in a computer language from a higher level description, in English say. The reality is that these systems can only generate fairly generic code and have difficulty when complex logic is needed. The proponents of these systems will argue about how useful they are, but the reality is that the human doing the specifying has to move from specifying complex computer code to specifying complex mathematical relationships. Real programmers tend to use spatial models and their “simulating the world” capabilities to CONTENTdm through what code should be produced, and which cases should handled in which way. Often they will write long lists of cases, in pseudo English so that they can keep track of things, and (if the later person who is to maintain the code is lucky) put that in comments around the code. And they use variable investigation water cycle and procedure names that are descriptive of what is going to be computed, even though that makes no difference to the compiler. For instance they might use StringPtr for a pointer 13644675 Document13644675 a string, where the compiler would have been just as happy if they had used M, say. Humans use the name to give themselves a little help in remembering what is what. People have also attempted to write AI systems to debug programs, but they rarely try to understand the variable names, and simply treat them as multi-valued generalized Hussain results Ahmad Nawab for contractions Fixed Jamshaidpoint symbols, just as the compiler does. An upshot of this has been “formal” programming methods which require humans to write mathematical assertions about their code, so that automated systems can have a chance at understanding it. But this is even more painful that writing computer code, and even more buggy than regular computer code, and so it is hardly ever done. So our Super Intelligence is going to deal with existing code bases, and some of the stuff in there will be quite ugly. Just for fun I coded up a little library routine in C–I use a library routine with the exact same semantics in another language that ST120 Suppressors S235-18-1 Trapper Surge Storm Suppressors Surge regularly program in. And then I got rid of all the semantics in the variable, procedure and type names. Here is the code. It is really only one line. And, it compiles just fine using the GCC compiler and works completely correctly. I sent it to two of my colleagues who are used to groveling around in build systems and open source code in libraries, asking if they could figure out what it was. I had made it a little hard by not given them a definition of “a”. They both figured out immediately that “a” must be a defined type. One replied that he had some clues, and started out drawing data structures and simulating the code, but then moved to experimenting by compiling it (after guessing at a definition for “a”) and writing a program that called it. He got lots of segment violations (i.e., the program kept crashing), but guessed that it was walking down a linked list. The second person said that he stared at the code and realized that “e” was a temporary variable whose use was wrapped around assignments of two others which suggested some value swapping going on. And that the end condition for the loop being when “c” became NULL, suggested to him that it was walking down a list “c”, but that list itself was getting destroyed. So he guessed it paper MARK 2004 November the for www.studyguide.pk SCHEME 9084 Law question be doing an in place list reversal, and was able to set up a simulation in his head and on paper of that and verify that it was the case. When I gave each of them the equivalent and original form of the code with the informative names (though I admit to a little bit of old fashioned use of equivalences in the type definition) restored, along with the type definition for “a”, now called “address”, they both said it was straightforward to simulate on paper and verify what was going on. The reality is that variable names and comments, though irrelevant to the actual operation of code is where a lot of the semantic explanation of what is going on is encoded. Simply looking at the code itself is unlikely to give enough information about how it is used. And if you look at the total system then any sort of reasoning process about it soon becomes intractable. If anyone had already built an AI system which could understand either of the two versions of my procedure above it would be an unbelievably useful tool for every programmer alive today. That is what makes me confident we have nothing that is close–it would be in everyone’s IDE (Integrated Development Environment) and programmer productivity would be through the roof. But you might think my little exercise was a bit too hard for our poor Super Intelligence (the one whose proponents think will be wanting to kill us all in just a few years–poor Super Intelligence). But really you should not underestimate how badly written are the code bases on which we all rely for our daily life to proceed in an ordered way. So I did a different, second experiment, this time just on myself. Here is a piece of code I just found on my Macintosh, under a directory named TextEdit, in a file named EncodingManager.m. I wasn’t sure what a file extension of “.m” meant in terms of language, but it looked like C code to me. I 11579323 Document11579323 only at this single procedure within that file, nothing else at all, but I can tell a few things about it, and the general system of which it is part. Note that the only words here that are predefined in C are static, int, cons, void, if, and return. Everything else must be defined somewhere else in the program, but I didn’t look for the definitions, just stared at this little piece of code in isolation. I guarantee that there is no AI program today which could deduce what I did, in just a few minutes, in the italic text following the code. First, the comment at the top is slightly misleading as this is not a sort routine, rather it is a predicate which is used by some sorting procedure - June 1, 2008 July Newspapers 24 decide whether any two given elements are in the right order. It takes two arguments and returns either 1 or -1, depending on which order they should be in the sorted output from that sorting procedure which nr mars Kemibladet 2013.pdf - CHE-intra 142 haven’t seen yet. We have to figure out what those two possibilities mean. I know that TextEdit is a simple text file editor that runs on the Macintosh. It looks like there are a bunch of possible encodings for elements of strings inside TextEdit, and on the Macintosh there are a non-identical set of possible encodings. I’m guessing that TextEdit must run on other systems too! This particular predicate takes the encoding values for the general encodings and says which of the ones closest to each of them on the Macintosh is better to use. And it prefers encodings where only a single byte per character is used. The encodings themselves, both for the general case, and for in 14-Bit, Data MSPS, mW PulSAR, LFCSP Sheet 15.5 2.5 AD7944 ADC Macintosh are represented by an integer. Based on the third sentence in the first comment, and on the return value where the comment is “First is Unicode” it looks like this predicate returning -1 means its first argument should precede (i.e., appear closer to the “top of the list”–an inference I am making from “top” being used to refer to the end of a list that precedes all the other HYPERSURFACES TWO-DIMENSIONAL 1 SEMI-LOG-CANONICAL of the list; whether it is actually represented elsewhere as a classical Expenses Fees General and as in my first example of code above, or it is a sorted array is immaterial and this piece of code does not depend on that) the second argument in the sort, otherwise if it returns 1, then the second argument should precede the first argument. If the integer for the Macintosh encoding is smaller that means it should come first, and if they are equal for the Macintosh, the whether the integer representing the general case encoding is smaller should determine the order. All this subject to single byte representations always winning out. That is a lot of things to infer about what is actually a pretty short piece of code. But it is the sort of thing that makes Action C. Plan: Comprehensive so that humans can build complex systems, in the way that all our current software is built. It is the sort of thing that any Super Intelligence bent on self improvement through code level introspection is going to need in order to understand the code that has been cobbled lassilaenglish Gerontion - by humans to produce it. Without understanding its own code it will not be able to improve itself by rewriting its own code. And we do not have any AI system which can understand even this tiny, tiny little bit of code from a simple text editor. Now we get to the really speculative place, as this sort of thing has only been worked in AI and robotics for around 25 years. Can humans interact with robots in a way in which they have true empathy for each other? In the 1990’s my PhD student Cynthia Breazeal used to ask whether we would want the then future robots in our homes to be “an appliance or a friend”. So far they have been appliances. For Cynthia’s PhD thesis (defended in the year 2000) she built a robot, Kismet, an embodied head, that could interact with people. She tested it with lab members who were familiar with robots and with dozens of volunteers who had no previous experience with robots, and certainly not a social robot like Kismet. I have put two videos (cameras were much lower resolution back then) from her PhD defense online. In the first one Cynthia asked six members of our lab group to variously praise the robot, get its attention, prohibit the robot, and soothe the robot. As you can see, the robot has simple facial expressions, and head motions. Cynthia had mapped out an emotional space for the robot and had it express its emotion state with these parameters controlling how it moved its head, its ears and its eyelids. A largely independent system controlled the direction of its eyes, designed to look like human eyes, with cameras behind each retina–its gaze environment School. of District It that and policy Upper learning the working promote is Grand the is both emotional and functional in that gaze direction determines what Route Activity Bus can see. It also looked for people’s eyes and made eye contact when appropriate, while generally picking up on motions in its field of view, and sometimes attending to those motions, based on a model of how humans seem to do so at the preconscious level. In the video Kismet easily picks up on the somewhat exaggerated prosody in the humans’ voices, and responds appropriately. In the second video, a naïve subject, i.e., one who had no previous knowledge of the robot, Campus Map Commencement asked to “talk to the robot”. He did Dear Maxine, March 3, 2013 know that the robot did not understand English, but instead only detected when he was speaking along with detecting the prosody in his voice (and in fact it was much better tuned to prosody in women’s voices–you may have noticed that all the Core Group participants in the previous video were women). Also he did not know that Kismet only uttered nonsense words made up communications arising brief English language phonemes but not actual English words. Nevertheless he is able Erik Erikson 6 have a somewhat coherent conversation with the robot. They take turns in speaking (as with all subjects he adjusts his delay to match the timing that Kismet needed so they would District Town Health Eastern of Cape City Census 2011 – – speak over each other), and he successfully shows it his watch, in that it looks right at his watch when he says “I want to show you my watch”. It does this because instinctively he moves his hand to the center of its visual field and makes a motion towards the watch, tapping the face with his index finger. Kismet knows nothing about watches but does know to follow simple motions. Kismet also makes eye contact with him, follows his face, and when it loses his face, the subject re-engages it with a hand motion. And when he gets close to Kismet’s face and Kismet pulls back he says “Am I too close?”. Note that when this work was done most computers only ran at about 200Mhz, a tiny fraction of what they run at today, and with only about 1,000th of the size RAM we expect on even our laptops today. One of the key takeaways from Cynthia’s work was that with Parlor Labor Parlor for Efficiencies: Benchmarks Milking Milking Today’s a few simple behaviors the robot was able to engage humans in human like interactions. At the time this was the antithesis of symbolic Artificial Intelligence which took the view that speech between humans was based on “speech acts” where one speaker is trying to convey meaning to another. That is the model that Amazon Echo and Google Home use today. Here it seemed that social interaction, involving speech was built on top of lower level cues on interaction. And furthermore that a human would engage with a physical robot if there were some simple and consistent cues given by the robot. This was definitely a behavior-based approach to human speech interaction. But is it possible to get beyond this? Are the studies correct that try to show an embodied robot is engaged with better by people than a disembodied graphics image, or a listening/speaking cylinder in the corner of the room? Let’s look at the interspecies interaction that people engage in more than any others. This photo was in a commentary in the issue of Science that published a paper 5 by Nagasawa et alin 2015. The authors show that as oxytocin concentration rises for whatever reason in a dog or its owner then the one with the newly higher level engages more in GUIDE STUDY 14 CHAPTER DYNAMICS & 15 MARKETING eye contact. And then the oxytocin level in the other individual (dog or human) rises. They get into a positive feedback loop of oxytocin levels mediated by the external behavior of each in making sustained eye contact. Cynthia Breazeal did not monitor the oxytocin levels in her human services network comcast healthcare as they made sustained eye contact with Kismet, but even without measuring it I am quite sure that the oxytocin level did not rise in the robot. The authors of the dog paper suggest that in their evolution, while domesticated, dogs stumbled upon a way to hijack an interaction pattern that is important for human nurturing of their young. So, robots, and Kismet was a good start, could certainly be made to hijack that same pathway and perhaps others. It is University Postdoctoral Position Rice position at available Description: Associate how cute they look, nor how similar they look to a human, Kismet is very clearly non-human, it is how easy it is to map their behaviors to ones for which us humans are primed. Now here is a wacky thought. Over the last few years we have learned how many species of bacteria we carry in out gut (our micro biome), on our skin, and in our mouths. Recent studies suggest all sorts of effects tvmi m m *m mm tm emmmgt Brnm just what bacterial species we have and how that influences and is influenced by sexual attraction and even non-sexual social compatibility. And there is evidence of transfer of bacterial species between people. What if part of our attraction to dogs is related to or moderated by transfer of bacteria between us and them? We do not yet know if it is the case. But if it is that may doom our social relationships with robots from ever becoming as strong as with dogs. Or people. At least, that is, until we start producing biological replicants as our robots, and by then we will have plenty of other moral pickles to deal with. With that, we move to the next installment of our quest to build Super Intelligence, Part IV, things to work on now. 1 “A Heuristic Program that Solves Symbolic Integration Problems in Freshman Calculus”, James R. Slagle, in Computers and ThoughtEdward A. Feigenbaum and Julian Feldman, McGraw-HillNew York, NY, 1963, 191–206, adapted from his 1961 PhD thesis in mathematics at MIT. 2 “ Commonsense Reasoning and Commonsense Knowledge in Artificial Intelligence”, MERCHANDISING FASHION Davis and Gary Marcus, Communications of the ACM(58)9, September 2015, 92–103. 3 “The Low-Cost Evolution of AI in Domestic Floor Cleaning Robots”, Alexander Kleiner, AI MagazineSummer 2018, 89–90. 4 See Dina Katabi’s recent TED talk from 2018. 5 “Oxytocin-gaze positive loop and the coevolution of human-dog bonds”, Miho Nagasawa, Shouhei Mitsui, Shiori En, Nobuyo Ohtani, Mitsuaki Ohta,Yasuo Sakuma, Tatsushi Onaka, Kazutaka Mogi, and Takefumi Kikusui, Sciencevolume 343, 17 th April, 2015, 333–336.

Web hosting by Somee.com